Nanocomposite for methanol oxidation: synthesis and characterization of cubic Pt nanoparticles on graphene sheets
نویسندگان
چکیده
We present our recent results on Pt nanoparticles on graphene sheets (Pt-NPs/G), a nanocomposite prepared with microwave assistance in ionic liquid 2-hydroxyethanaminiumformate. Preparation of Pt-NPs/G was achieved without the addition of extra reductant such as hydrazine or ethylene glycol. The Pt nanoparticles on graphene have a cubic-like shape (about 60 wt% Pt loading, Pt-NPs/G) and the particle size is 6 ± 3 nm from transmission electron microscopy results. Electrochemical cyclic voltammetry studies in 0.5 M aqueous H2SO4 were performed using Pt-NPs/G and separately, for comparison, using a commercially available electrocatalyst (60 wt% Pt loading, Pt/C). The electrochemical surface ratio of Pt-NPs/G to Pt/C is 0.745. The results of a methanol oxidation reaction (MOR) in 0.5 M aqueous H2SO4 + 1.0 M methanol for the two samples are presented. The MOR results show that the ratios of the current density of oxidation (If) to the current density of reduction (Ib) are 3.49 (Pt-NPs/G) and 1.37 (Pt/C), respectively, with a preference by 2.55 times favoring Pt-NPs/G. That is, the tolerance CO poisoning of Pt-NPs/G is better than that of commercial Pt/C.
منابع مشابه
Ag/Pt Core-Shell Nanoparticles on Graphene Nanocomposite for Effective Anodic Fuels Electro-oxidation
The nanocomposite consists of the Ag as a core and Pt as shell on the surface of graphene nanosheets (Ag/Pt-G) was synthesized with a simple method and used as a novel electrochemical platform for an efficient catalyst for oxidation of the ethanol, methanol and formic acid. The morphology and electrochemical properties of Ag/Pt-G nanocomposite were investigated by TEM, X-ray diffraction, and vo...
متن کاملSynthesis and characterization of Pt/graphene-CNTs electrocatalyst for direct methanol fuel cell
In the present work we report a facile method for the synthesis of Pt nanoparticles supported reduced graphene oxide (rGO) and multi-walled carbon nanotubes (MWCNTs) nanocomposite by an in-situ chemical reduction. The incorporation of MWCNTs to rGO leads to decrease in agglomeration between rGO sheets due to π – π interactions and higher loading of Pt nanoparticles. In this process, a mixture o...
متن کاملSynthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation
The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...
متن کاملSynthesis and characterization of Pt3Co bimetallic nanoparticles supported on MWCNT as an electrocatalyst for methanol oxidation
The impregnation method was used to synthesize Pt and Pt3Co supported on MWCNTs applying NaBH4 as the reducing agent. The structure, morphology, and chemical composition of the electrocatalysts were characterized through SEM, XRD, and EDX. X-ray diffraction showed a good crystallinity of the supported Pt nanoparticles on the composites and showed the formation of Pt3<...
متن کاملMulti-walled carbon nanotubes supported palladium nanoparticles: Synthesis, characterization and catalytic activity towards methanol electro oxidation in alkaline media
Palladium nanoparticles supported on multi-walled carbon nanotubes (Pd/MWCNTs) have been synthesized using a modified polyol reduction method and its performance in methanol oxidation reactions has evaluated. The morphology of palladium on MWCNTs was characterized by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The catalytic performance of synthesized catalyst ...
متن کامل